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Coaxial Probe Modeling in Waveguides and Cavities
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Abstract—Modeling, design and sensitivity analysis of probe-
excited cavities are presented. The 3 cavities moment method
is used to obtain the 2-port scattering matrix of the probe-ex-
cited semi-infinite waveguide while a novel equivalent circuit is
introduced and used as a circuit model for the scattering ma-
trix. A design procedure for probe-excited input/output cavi-
ties in waveguide filters is proposed and a sensitivity analysis is
carried out to show the effect of the probe’s dimensions on the
electrical characteristics of the circuit. Agreement with exper-
imental data is excellent for loosely-coupled probe-excited semi-
infinite waveguide problems. An example for a 15 GHz thick
iris filter verifies the validity of the proposed design.

I. INTRODUCTION

HE INPUT and output ports of microwave cavity fil-

ters are sometimes realized by coaxial probe-excited
cavities [11, [2] to avoid using extra coaxial waveguide
transitions. The probe-excited waveguide problem has
been treated for three decades [3]-[5], but the efforts were
mainly focused on calculating the input impedance as a
function of waveguide and probe dimensions to design
good adaptors. There are no accurate theoretical models
in the literature for predicting the 2-port scattering matrix
of coaxial probe excited cavities or the loading effects of
the probe on the resonant frequencies. There is also no
circuit model to describe the behavior of the junction that
can be incorporated into the microwave filter design. The
traditional method of probe-excited input/output cavity
design is experimental. The depth of the probe is deter-
mined empirically, usually requires additional tuning
screws to fine-tune the resonance frequency [1]. The fre-
quency responses of the filter cannot be accurately pre-
dicted before manufacturing and the cut-and-try process
is difficult and time-consuming. If the 2-port scattering
matrix of the coaxial-waveguide junction is available, im-
provement in the design of the probe-excited cavity prob-
lem is possible, leading to accurate designs of filters which
require no tuning. Such designs could be used to realize
miniature dielectric filled waveguide filters, suitable for
inexpensive mass production techniques.

In Section II, it is shown how the input impedances (or
input reflection coefficients) of 3 cavities can be used to
set up three linear equations for obtaining the 2-port scat-
tering matrix of a probe-excited semi-infinite waveguide.
The moment method (MM) is used to calculate the input
impedance of the probe-excited cavity. In Section III, a
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circuit model consisting of an impedance inverter and two
sections of transmission lines is proposed to represent the
scattering matrix of the structure; and a new design pro-
cedure for the input/output probe excited cavities of
waveguide filters is outlined. Effects of dimensional tol-
erances of the probe and cavity on the electrical perfor-
mance of the filter are analyzed. Section IV shows ex-
amples of calculated and experimental scattering matrices
of probe-excited loosely-coupled semi-infinite wave-
guides. An experimental filter was designed and tested
with good agreement between the numerical results and

~ experimental data.

II. DETERMINATION OF TwoO-PORT SCATTERING
MaTtrix Using 3 CAvVITIES SOLUTION

Consider the problem of determining (by measurement
or by numerical calculation) the two-port scattering ma-
trix of the probe-excited waveguide shown in Fig. 1(a)
with scattering matrix representation shown in Fig. 1(b).
The elements of the scattering matrix S;; and §,, can be
determined by finding the reflected wave (in the coaxial
line) and transmitted wave (in the waveguide side) due to
an incident wave in the coaxial line. In a similar way, S,
and S}, can be determined by calculating the reflected
wave (in the waveguide) and transmitted wave (in the
coaxial line) due to an incident wave in the waveguide.
Alternatively, it is possible to extract the 2-port scattering
matrix by impressing the incident wave in the coaxial line
only. If port 2 in Fig. 1.(b) is terminated by three different
known lengths (L;, i = 1, 2, 3) of shorted guides, and the
corresponding input reflection coeflicients at port 1 I';(i =
1, 2, 3) are measured (or computed), then it can be shown
that the 2-port scattering matrix elements can be calcu-
lated by solving the following matrix equations [6]:

1 I Iy, Ty, Sii I
1 Ly, Iy, S =l @
1 F3 FL3 FL} S12 S21 - Sll S22 F3

The reflection coefficients of the shorted guides are I'y,
= —e /2L i = 1,2, 3, where 8 is the guide propaga-
tion constant and L; are the lengths of the shorted guides.
The measurement configuration is shown in Fig. 1(c). For
accuracy, the phases of the reflection coefficient of the
terminating short-circuited waveguide sections should not
have 360° differences at the frequencies of interest. The
best condition is that these phases differ by 120° and 240°.
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Fig. 1. (a) Coaxial probe-excited semi-infinite waveguide. (b) Scattering
matrix representation. (c) Three shorted guides used to extract two port
scattering matrix:

MOMENT METHOD SOLUTION OF PROBE-EXCITED
Cavity
To compute the reflection coefficients I';, the moment
method is used to calculate the input impedances of the

probe-excited cavities of Fig. 1(c). The formulation is -

similar to the semi-infinite waveguide problem [5] and is
briefly summarized here. Assuming that the aperture field

is a coaxial TEM mode, then the field at the aperture is a -

function of the coaxial terminal voltage (V) at the junc-
tion. According to the equivalence principle [3], [7], this
aperture field can be replaced by an equivalent magnetic

current source backed by a perfect electric conductor. This -

equivalent magnetic current source is given as a function
of voltage as
My=— g
“" pin@/D) "
where p, d and D are defined in Fig. 1(a).

For a'thin probe, the effect of the probe’s end surface
can be neglected, then only y-directed electric current

ford<p<D (2

flows on the probe. The Green’s function of a y-directed

electric current element on the probe and the x- and
z-directed magnetic currents on the aperture are derived
and must be converted to a fast-convergent series for the
cavity in a similar way for the semi-infinite waveguide
[31, 151, [8].

The field due to each source is represented as an inte-
gral of the product of its source and a Green’s function
[7]. The total electric fields along' the probe axis (i.e.,
y-direction) in the cavity are the summation of the radia-
tion field due to electric currents on the probe and the
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Fig. 2. (a) One-filament éxially—concentrated current épproximation. (b)
Multifilament current approximation. (¢) Real current flow on probe.

scattered field due to magnetic currents at the aperture:
32

ot = | —jo + ——— G, J, ds’
¥ total < Jo jwu63y2> Sprobe Ay &

1y 0
- = {- S MGy, ds’
e ( 0z aperture

d S ,
dx aperture MZGFZZ ds } (3)

where J, is the electric current on the probe while M,, M,
are the x- and z-components of the magnetic current at
aperture, G4, Gr,, and Gy, are the Green’s functions de-
fined in the Appendix. Forcing the tangential electric field -
on the probe’s surface to be zero, the electric current on
the probe can be determined by moment method. The in-
put impedance is computed as the ratio of the input ter-
minal voltage at the coaxial aperture divided by the elec-
tric -current on the probe at the coaxial-waveguide
junction, asin [5]. Expressions for the Green’s function
and its transformation to faster converging series to be
used in numerical calculations are shown in the Appen-
dix. The details of the numerical procedure of the moment
method can be found in [5] and [9].

The current approximations on the probe used in this
paper are shown in'Fig. 2.(a) and (b). The 1 filament ax-
ially-concentrated current approximation in Fig. 2(a) is
widely used in dipole antenna problems, while the multi-
filament current approximation in Fig. 2(b) is suggested .
by [5]. Fig. 2(a) and (b) also show the lines where the
boundary conditions are enforced. The real current flows
on the probe as shown in Fig. 2(c); the current is.distrib-
uted over all the probe’s surface, including the end sur-
face.

For filter applications the probe-excited cavity is usu-
ally a loosely-coupled resonator, and the probe’s depth H
is always much smaller than the operating wavelength. A

oSt

- one term trial function is used to expand the induced

probe’s current in the y direction. In this paper, the fol-
lowing two functions: are used and compared.

sin k,(y — H) : , 4

T
smz—}}(y—H) . &)
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The first is widely used in dipole antenna problems [10],
the 2nd one is the first term of the expansion functions,
sin nw /2H (y — H) [11], where n is a positive integer.

1I1I. CircuiT REPRESENTATION, DESIGN, AND
SENSITIVITY CONSIDERATIONS

Circuit Representation and Design

Once the scattering matrix is obtained from the numer-
ical model, a circuit representation can be made to de-
scribe the model behavior as a function of dimensions.
For all pole microwave filters, the basic circuit blocks are
the impedance (or admittance) inverters and resonators as
shown in Fig. 3.(a) [12]. The probe’s circuit representa-
tion in Fig. 3.(b) is preferred to 7- or w-networks as in
[12]. The element values in Fig. 3(b) can be derived di-
rectly from the junction scattering matrix by imposing the
lossless (unitary) and reciprocal conditions. The results
are

Ko _ 1 =[Sy 6)
NZ.Z, 1+ Sy
1 T
= 20 +2 i=1,2
o, 3 9, + > i , 7
or
Ky, _ 1+ |8y @)
NZ.Z, 1 — Syl
¢, = —10 i =1,2 )
[ 2 ! 1 =1,

" where 0, is the phase of S;, Z., Z,, are the characteristic
impedance of coaxial line and waveguide respectively. It
can also be shown that the phase of S,; is equal to (3(6;
+ 6,) — /2 + nw), where n is an integer. For odd n,
(6), (7) should be chosen while (8), (9) should be used
for even n. Either set of equations will result in the same
absolute values of the insertion loss response of the filter.
The value of Kj; can also be related to the external Q of
the input/output cavity [12] as

T

()
< Ko, >2 Ao
N
where A, is the guide wavelength, A, is the free space
wavelength.

It is worth noticing that ¢, in Fig. 3(b) (which is related
to the phase of S,, by (7) or (9)) should be combined with
adjacent cavity in the design process. This suggested that
the characterization of the port 2 as defined in Fig. 1(b)
is preferred for microwave filter design and the choice of
the reference plane at the input port is not important. In
(6) and (8), |S,,| is used rather than |S;;| in order to em-
phasize this. This is also true for other asymmetrical cou-
pling structures. Thus the design parameters needed in the

Q. = (10
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Fig. 3. (a) Microwave filter model as cascade of resonators and inverters.
(b) A circuit representation of a lossless, reciprocal junction.

filter design based on the junction characterization are K
and ¢, only.

Based on the techniques described above, a new accu-
rate design technique for probe-excited waveguide cavi-
ties is proposed as follows:

1. Choose /; in Fig. 1(a) at about one quarter wave-
length at the resonant frequency.

2. Compute the required magnitude of S,,, i.e. |Sy,|,
by (6) or (8) for given K or (6), (8) and (10) for
given external Q.

3. Optimize the probe depth H to obtain the required
|S5,] in step 2.

4. Determine I (which is the location of the shorted
plane to have the cavity resonate at the desired cen-
ter frequency) by shifting the phase of S,, to 180°.
Then take into account the phase offset of the cou-
pling circuit of the next cavity (i.e. reduce the elec-
trical length I} by —6/2, where 6 is the phase of
the input reflection coeflicient of the coupling cir-
cuit) to obtain the correct /,.

5. Compute the filter response by cascading the scat-
tering matrices of the probe-excited cavities sec-
tions and the other elements of the filter.

The dispersive nature of the element values in the cir-
cuit representation of the probe-excited cavity will con-
tribute some deviation of the response from the ideal. It
can be improved by optimizing around the design dimen-
sions obtained from the above procedure. However the
other elements of the microwave filter should undergo the
same correction procedure.

SENSITIVITY CONSIDERATIONS

Waveguide cavity filters are more suitable for narrow
or moderate bandwidths (a few percent of center fre-
quency). The filter response is very sensitive to the vari-
ations of the structure dimensions, especially at high fre-
quencies. The undesired deviations of the filter response
from the ideal result from two sources: one is inaccurate
component modeling, the other manufacturing errors or
tolerances.

The residual reflection coeflicient in the passband dp
(defined as the maximum passband reflection coefficient
of the perturbed response minus the one without pertur-
bation), due to the small perturbations of the probe’s di-
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mension £ is
dp; = SkSESE + SpSLok (11)

where £ is H or d and f is the cavity resonant frequency.
The sensitivities S%, Sf, §# and S’; in (11) are defined as

do . dp
§P = —0 0 = P
K7 O8K/K oIk (12)
dp dp
Sp = " - "
P o/ amy a
of/f _dlnf
St = L4
A ot P (14)
dK/K dInkK
S = ==
£ 2t T (15)
The sensitivity of p w.r.t. £ can then be written as
8¢ =SS + s4584 (16)

The design parameter K is the value of the impedance

inverter of the input/output stage in Fig. 3(a), and the
phase ¢, affects the resonant frequencies of the input/out-
put resonators. If the computed design parameters K and
¢, have deviations 6K and 8¢, from the desired values,
the perturbations in passband reflection coefficient can be
written as:

opx = Sx6In K 17)

' 0 In
Opg, = 84,00, = S} —f&bz
99,
The sensitivity of p w.r.t. K has been given in (12) and

the sensitivity of p w.r.t. ¢, is

(18)

(19)

In summary, (16) expresses how the variation of probe
dimensions affects the filter passband performance and can
be used to determine the tolerance of the dimensions. The
required sensitivities are: S%, Sf, S§ and ${. Equations
(12) and (19) provide the impact of the model’s errors and
can be used to determine the accuracies required in the
parameter determination.

IV. RESULTS AND DISCUSSIONS

All the sample numerical and measured data discussed
below and shown in Figs. 4 to 9 were obtained for.a WR62
Waveguide (@ = 0.622”, b = 0.311") and an SMA coax-
ial probe (inner diameter: 24 = 0.050", outer
diameter: 2D = 0.132” and characteristic impedance:
Z, = 509Q).

Figs. 4 and 5 show the computed and experimental re-
sults of the magnitude and phase of input reflection coef-
ficients of probe-excited semi-infinite waveguide. The
computed moment method solutions are obtained and
shown for four cases:

1. Using 3 shorted lengths of waveguides (cavities) and
1 filament axially-concentrated probe current, as
shown in Fig. 2(a)
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Fig. 5. Numerical and measured S;; for a probe-excited semi-infinite
waveguide. (Probe depth: H = 0.078").

2. Using 3 shorted lengths of waveguides (cavities) and
multifilament probe current, as shown in Fig. 2(b)

3. Using semi-infinite waveguide and 1 filament. axi-
ally-concentrated probe current

4. Using semi-infinite waveguide and multifilament
probe current

A single expansion function is used for the probe cur-
rent in the probe’s direction in the case of cavity, i.e., sin
k,(y — H). For the semi-infinite waveguide cases, two
expansion functions are used, as in [S]. The additional
termis sink,(y — H) + a(l — cos k,(y — H)), where
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data of a probe-excited cavity.

« is constant to make this function orthogonal to sin &, ( y
— H).

The frequency variation of the theoretical and experi-
mental 2-port scattering matrices (both amplitude and
phase) for two different probe’s depths are shown in Fig.
6 and 7. Only one filament current is used but both the
trial functions of (2) and (3) are computed. Experimental
data agree well with the 3 cavities moment method solu-
tions with either trial functions sin k,(y — H) or sin
w/2H(y — H) for loosely-coupled cases.

From the results and many computer simulations using
each of the above described moment method computa-
tions, the following observations are noted:

1. The center-filament current approximation yields
closer result to experiment than multifilament cur-
rent modeling.

2. The three-cavity moment method yields better re-
sults than the direct semi-infinite waveguide but they
are very close for very thin probe.

3. The computed phase of S,, is much closer to the
experimental data than that of §;.

4. For long probes, the numerical results are less ac-
curate than for shorter probes.

The circuit parameters K and Af of the same probes as
in Figs. 6 and 7 are shown in Fig. 8. The quantity Af in
Fig. 8 is defined as the phase shift due to probe loading
and is computed from

2t

Af =
T N

(20)
8

where /; is the location of shorted plane that makes the
cavity resonate at the operating wavelength A,.
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Fig. 8. Parameters K and Af of probe-excited cavities in Fig. 6 and 7.

Fig. 9 shows the variation of K, A6 and external @ (Q,)
as a function of the probe depth.

Fig. 10(a) shows the dimensions of a probe-excited 6
pole, 0.05 dB ripple, 14.94 GHz, thick-iris filter. The de-
sign bandwidth is 420 MHz (2.8 %) and the required input
impedance inverter K/vZ.Z,, is 0.2679. The results of
the input cavity design are listed in Table I and the sen-
sitivities of the probe-excited cavity are listed in Table II.

Table III shows the amount of perturbation of each pa-
rameter for a residual reflection coefficient of 0.1 (i.e.
maximum return loss of 13.7 dB), where wp is the relative
bandwidth of the filter. It is observed that the residual
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TABLE 11
COMPUTED SENSITIVITIES OF THE PROBE-ExXCITED INPUT/OUTPUT CAVITY
OF THE FILTER IN FIG. 10(a)

S5 s% s, §, st
1.6% /mil  0.028/mil  0.098% /mil ~ 0.075% /mil 0.95

S? 5% 5 se, s,

12.2 0.028 /mil. -0.046/mil  0.075/per°*  0.0375/per®

d=0.025" a = 0.622" d=g025"

H= 066" b =0311" . ;{= 0.066"

ly=g.223¢ " o 1=0.223"
. 0.424 0.424 0.424" "

L=0228" - 0424 L=¢.228"

> o —

0.290" 0.341" 0.347" 0.341" 0.290"
(@)
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Theoretical Result
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)

(a) An experimental 6 poles, 0.05 dB ripple, thick iris filter. (b)
Theoretical and experimental results of the filter in (a).

Fig. 10.

‘ _ TABLEI .
DESIGN VALUES OF THE PROBE-EXCITED INPUT/OUTPUT CAVITY OF THE
FiLTER IN FI1G. 10(a)

1, A H K/Z, &, A8

0.223” 0.228" 0.066" . 0.2679 85.2° 5.2°

TABLE HI
THE AMOUNT OF PERTURBATION THAT RESULTS IN 0.1 PASSBAND .
RESIDUAL REFLECTION COEFFICIENT OF THE FILTER I FIG. 10(a)
IN F1G. 10(a)

Ag, Af,

Af/F

0.29%wg

AH Ad AK/K

375mils  2.07mils  10.5% 1330 2.66°

reflection coefficient due to perturbation of the resonant
frequency and phase of S, is roughly linearly dependent
on the filter bandwidth for given order and passband rip-
ple. This result indicates that the filter resporse is very
sensitive to the phase of the return loss of the input/output .
coupling elements. For example, the value of A, in Ta-

“ble II is only about 1° for a 1% relative filter bandwidth.

Fig. 10(b) shows the computed and measured response
of the filter in Fig. 10(a). The scattering matrices of the
coupling irises are computed by the mode matching tech-

~ nique [2].

V. CONCLUSIONS

The three cavities moment method is used to numeri-
cally model probe-excited cavities. This method shows
better agreement with experimentdl data than the semi-
infinite waveguide method. The complete characteriza-
tion of the coaxial to waveguide transition of a two port
scattering matrix are obtained. Sensitivity analysis of the
filter response to changes in the probe’s dimensions and
other filter design parameters are performed. Experimen-
tal measurements show excellent agreement with the nu-
merical results of the probe-excited cavity. An experi-
mental filter designed using the proposed probe model
verified the validity of this model. The sensitivity analysis
is a very powerful tool in determining the feasibility of
the exact filter’s design. This method is valuable for the
design of high-dielectric-constant-filled miniature cavity
filters.

APPENDIX
Let Gy, (x, ¥, 2; X', ¥',.2") be the magnetic vector po-
tential at field point (x, y, 2) due to the unit y-directed
electric current at source point (x’, y’, z') in a rectangular
cavity as in Fig. 1(c). The Gf, and Gy, are the electrical
vector potentials due to unit x- and z-directed magnetic
current sources respectively. Follow the procedure in [3],
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the following can be derived:

G, x, ¥,z X', ¥, 7) = 2 2 Cyysink, < 2> cos kyy sinh v,,,(z + ), forz = 7

n=1m=90
= 2 2 D,,sink, < ;> cos kyy sinh v,,,(z — L), forz = 7/ (A1)
n=1m=0
where
co= - 4y sink,(x' — a/ 2)' cos kyy' sinh 7v,,, 2" — b) (A2)
abeom Ymn sinh Ymn (ll + 12)
D, = — dp sin k (x' — a/2)‘ cos k,y’ sinh v,,, (" + 1}) (A3)
abeom Ymn Slnh Ymn (ll + lz)
Gr (x,y, 73", y,2) = 2 2 A, sin k, <x - g) cos kyy cosh v,,,(z + 1)), forz < 7'
n=1m=0
= 2, 2. B,,sink, <x - g) cos kyy cosh v, (z — L), forz = 7' (A4)
n=1m=0
where }
A = — de sink,(x' — a/ 2). cos k,y' cosh v,,,(z — L) (A5)
abeom Ymn sinh Ymn (ll + 12)
B = — 4e sin k. (x' — a/2)‘ cos k,y' cosh v,,,(z" + 1) (A6)
abeom Ymn Slnh Ymn (ll + 12)
Gr, (5, y, 52, ¥, &) = L 24 Ey, cos k; <x - g) cos kyy sinh v,,,(z + ), forz <z’
n=1m=0
= 2 X% Fycosk, < §> cos k,y sinh v,,,(z — h), forz =z’ (A7)
n=1m=0
where
E = - de cos k,(x' — a/ 2? cos k,y' sinh v,, (" — L) (AS)
abeom Ymn SlIlh Ymn (ll + 12)
4e¢ cos k,(x' — a/2) cos k,y’ sinh v, (z' + [
F, = — ¢ X ( a/ ) vy Ymn (2 1) (A9)

abe oy, Yon SIDN Y (I + 1)

where k, = nw/a, k, = mw /b and v,,, = VKki + k5 — ki, k, is the free space wave number. ¢,, is 2 for m equal 0

and is 1 otherwise.
For large m and n, v, in (A1) approach k, = vk + k2. Furthermore, if the condition e ™" << e rmlz=2l (G =
1, 2) is true, the terms in (A1) that contain +v,,, approach the limit for large m, n:

sinh Yy (2 = b) sinh v + 1) | —fem7D AL0)
Ymn sinh Ymn (ll + 12) ch

’
For z = 7', rearrange G,,, as

4p % cos k,y' cos k,y

Ga, %, y, 2, x',y',2)) = — A - {ngl sin k,(x' — a/2) sin k,(x — a/2)

sinh v, (z' + 1) sinh v,,,(z — 1) o~ kelz =2 = .
< ’Ymn Sinh ’Ymn(l] ‘+‘ 12) 2kc el sin x(x a/ )

. e—kclz L"
- sin k(x — a/2) <——T>} (Al1)
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The second summation of index s, denoted as § f,f’f;;, can G e~ k=2
be rewritten as follows using Poisson’s summation the- S0 = 2% (A18)
ory: ‘
G S . SSrs = 21 sin k(x' ~ a/2) sin k(x — a/2)
Spte = 2_3] sin k. (x' — a/2) sin k,(x — a/2) ™ 2 * "
—ke|z—2|
klz— 7 e
. <_€L'_'> 4 : <—2k > = -8 (A19)
2%k, ) ¢
a 1 — e—j‘rr/a(Ix +x" +a|+z -2 GF;;(x9 Vs Z5 x, ylv 7')
= ——Rejl ; o
47]' (1 { n 1 — e—jﬂ'/a(l.f—x [+j]z —zp]) }’ B _4—_” 2 cos ky)" cos kyy
m =0 ab m=o0 €om
a < > .
T a2 - {gl cos k(x' — a/2) cos k(x — a/2)
. — ¥ 2 Y
(K &N~ % + 2107 + ¢z - 2)) (SO Oy 4 SGF.;} (A20)
~ KNG + % +a + 2na) + ¢ — 2D, ' ‘
) where
- smh 7y,,,(2° - smn vy, (2 —
where K, is Bessel’s function of 2nd kind. Using the fol- S = o = 2 (A21)
lowing notations: Yo SION V(D + 1)
—kelz — 2’|
sinh y,(z' + 1) sinh v,z — I Gr. _ ¢
§Ga = Yol ' 1) sinh v,z — b) (A13) SGr Y (A22)
Ymn sinh 'Ymn(ll + 12) ¢
—kelz 2| d
Sﬁﬁ‘,‘m - _°¢ 2]; (A14) S,me = ngl cos k(x' — a/2) cos kfx — a/2)

Equation (A1) can be rewritten as

Gp(x, yo 23 x", ¥, 2)

_ 4 % cos k,y' cos k,y i ) , ,
B ab m=o0 €om n=1 st kX(x 0/2)

sinko(x — a/2) (Soa — Sgtb) + Sﬁ?&}
(A15)

Equation (A15) is used in numerical computation, since
it converges faster than the original series.

Similarly, other Green’s functions for the case of 7 =
z' can be transformed into fast convergent series using the
same procedures as above. The results are listed below:

GFv(xs y; Z; x,# yl’ Z,)

4 os k,y' cos k 2 :
=k 08 HY CO8 Y *Vy{Z sin k,(x' — a/2)
ab m=0 €om n=1
“sink,(x — a/2) (Sgr — S + S,‘:Z,F;,;,}
[1] K

(A16)
[2) H

above equations.

_ka“~'|

2k,

.<_e >

_ﬁ_ Re {In (1 _ e‘J"/a(|X+X'+a1+J|z—z'|)
47

Il

+In(l - e—j‘n’/a(‘X“l'I+‘]|Z—Z")}, m=0
a o]
-4y
47 n=—o
. {K,,(ky\/(x —x' 4 2na* + (z - 29},
m=0

+ K,k + x' + a + 210 + (z — )%}

—klz -7
b

L, m 0 (A23)

4k,

For the case of z < z’, just interchange z and z’ in
J g
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